Civil Engineering Courses
C E 100 - Introduction to Civil Engineering
(1 hour)
Introduction to the civil engineering professions. Introduction to fundamental engineering concepts; engineering design; engineering ethics; professional societies; introduction to computers and computer applications.
C E 124 - Emerging Technologies in CEC
(1 hour)
Examination of emerging computer technologies and their relevancy to civil engineering and construction. Introduction to common software including spreadsheet, word processing, data bases, graphics, and presentation. Exposure to multimedia tools such as text, image, sound video, and animation. Introduction to e-mail and Web page development.
C E 150 - Mechanics I
(3 hours)
Analysis of two- and three-dimensional force systems by vector algebra. Applications of principles of equilibrium to particles, rigid bodies, and simple structures. Friction, distributed forces, center of gravity, centroids, moments of inertia. U.S. and SI systems of units and applications. Prerequisite: MTH 121 or MTH 115
C E 200 - Engineering Co-Op
(0 hours)
Full-time cooperative education assignment for civil engineering students who alternate periods of full-time school with periods of full-time academic or career-related work in industry. Satisfactory/Unsatisfactory. Prerequisite: sophomore standing in the College of Engineering and Technology, 2.0 overall grade point average at Bradley, approval of engineering and technology Co-op coordinator and Co-op faculty advisor.
C E 206 - Surveying
(2 hours)
Theory and applications of measurements of horizontal distances, differences in elevations, horizontal angles, vertical angles, bearings, azimuths, and areas and volumes. Simple horizontal and vertical curves, topographic surveys and mapping. Public land surveying system. Introduction to GPS technology.
C E 210 - Numerical Methods in Civil Engineering
(3 hours)
State-of-the-art algorithms used in solving complex engineering problems. Mathematical models involving ordinary and partial differential equations. Initial value, boundary value, and transient problems in civil engineering. Prerequisite: MTH 223.
C E 224 - CADD
(3 hours)
Examinations of graphical capabilities of current computer-aided design and drafting (CADD) systems. Theoretical and hands-on applications of the most widely used CADD systems available for Civil Engineering and Construction students. Prerequisite: CON 132.
C E 250 - Mechanics II
(3 hours)
Kinematics and kinetics of particles and rigid bodies using vector analysis. Kinetics includes principles of force-mass-acceleration, work-energy, and impulse-momentum. Prerequisite: CE 150.
C E 260 - Fluid Mechanics
(3 hours)
Fluid properties and fluid motion: basic laws of motion in integral form; applications of basic laws in solving fluid flow problems. Hydrostatics, dimensional analysis, similitude, and incompressible viscous flow (both laminar and turbulent) in conduits. Introduction to open channel flow; culverts, sewers, and streams. Laboratory experiments. Prerequisite: CE 250.
C E 270 - Mechanics of Materials
(3 hours)
Internal forces; stress, strain, and their relations; stresses and deformations in axial and torsional loading; indeterminate problems; stresses and deformations in flexural members; transformation of stresses; introduction to member design; column buckling analysis. Prerequisite: CE 150.
C E 310 - Probability, Statistics and Decision Making in Civil Engineering
(3 hours)
Basic probabilistic and statistical decision making principles used in civil engineering design and practice. Probabilistics models and decision theory. Prerequisite: MTH 122.
C E 350 - Geotechnical Engineering
(4 hours)
Physical properties of soils, soil profiles, and deposits. Soil strength determination. Flow of water through soil masses. Laboratory experiments. Prerequisite: CE 260, CE 270.
C E 356 - Pavement Design
(4 hours)
Pavement engineering and design. Selection testing, and use of highway pavement construction materials in relation to function, environment, and cost. Structural properties of asphalt (flexible) and concrete (rigid) pavements; laboratory experiments. Prerequisite: CE 350.
C E 359 - Structural Analysis
(4 hours)
Analysis of statically determinate structures including influence lines. Deflections by area-moment, conjugate beam, and Castigliano's theorem. Analysis of statically indeterminate structures including influence lines. Classical solutions by consistent displacements, three-moment theorem, moment distribution, and slope deflection methods. Matrix methods for structural analysis by stiffness approach. Prerequisite: CE 270.
C E 360 - Introduction to Environmental Engineering
(4 hours)
Analysis techniques and design procedures for unit operations and unit processes for water and waste water treatment. Techniques for the examination of water and waste water quality. Laboratory experiments. Prerequisite: CHM 110 and CHM 111.
C E 365 - Reinforced Concrete Design
(4 hours)
Theory and design of reinforced concrete structures: beams, columns, slabs, walls, and buildings. Current ACI Code provisions for elastic and ultimate design. Laboratory experiments. Prerequisite: CE 359.
C E 393 - Sustainability and Public Policy
(2 hours)
Introduction to engineering economics with applications to assessment of sustainable alternatives in infrastructure, ability to engage in life-long learning, knowledge of contemporary issues, understanding professional and ethical responsibility, and ability to function on multi-disciplinary teams. Applications of systems engineering concepts including optimization. Prerequisite: MTH 122
C E 401 - Seminar
(1 hour)
Papers, reviews, and discussion of current technical literature. Prerequisite: senior standing in civil engineering.
C E 422 - Foundation Analysis and Design
(3 hours)
Analysis and design of footings, raft foundations, retaining walls, piles, and caissons, based on current theories and design considerations in soil mechanics, concrete, and steel. Prerequisite: CE 350, CE 365.
C E 430 - Water Supply & Hydraulic Engineering
(3 hours)
Water use and wastewater generation. Conveying and distributing water. Wastewater and stormwater conveyance system design. Design of storage structures and other systems for water conservation and water use; open channel flow, closed conduit flow, hydraulic structures, hydraulic power conversion. Prerequisite: CE 260.
C E 442 - Design of Steel Structures
(3 hours)
Design of steel structural members. Behavior of members and connections. Theoretical and practical considerations in member selection and joint design. Prerequisite: CE 359.
C E 465 - Surface Water Hydrology
(3 hours)
Introduction to hydrological cycle. Hydrologic measurements and monitoring. Surface water hydrology: runoff and the catchment, hydrographs, unit hydrographs, hydrograph routing, urban and small watershed hydrology, hydrologic design, synthetic streamflows, simulation models, applications of probability and statistics to surface water hydrology. Prerequisite: CE 260, CE 310 or equivalent.
C E 480 - Transportation Engineering
(3 hours)
Introduction to transportation engineering and planning as it relates to highways. Characteristics of highway systems: the driver, vehicle and roadway, traffic engineering studies, highway safety, traffic flow fundamentals, capacity and level of service concepts, intersection traffic control, transportation planning and site impact analysis, geometric design of highways. Prerequisite: CE 206.
C E 481 - Projects I
(1-3 hours)
Supervised individual study of civil engineering projects. Prerequisite: consent of advisor.
C E 482 - Projects II
(1-3 hours)
Supervised individual study of civil engineering projects. Prerequisite: consent of advisor.
C E 491 - Special Topics I
(1-3 hours)
Topics of special interest which may vary each time course is offered. Topics are stated in the current Schedule of Classes. Prerequisite: consent of advisor.
C E 492 - Special Topics II
(1-3 hours)
Topics of special interest which may vary each time course is offered. Topics stated in current Schedule of Classes. Prerequisite: consent of advisor.
C E 493 - Civil Engineering Design Project I
(1 hour)
First of a two-semester course design project sequence. Discussions of the relationship between the owner, architect, consultant, superintendent, construction manager, general contractor and subcontractors. Methods of project delivery, Project concepts through construction, design phases, and project challenges. Leadership, ethics, public policy issues, LEED, and basic business management practices. Oral and written report of preliminary plan. Prerequisite: CE 393
C E 498 - Civil Engineering Design Project II
(3 hours)
Detailed design of systems. Application of engineering design principles to realistic projects in structural engineering, environmental engineering, site development. Codes and standards, feasibility studies, consideration of design alternatives, selection criteria including systems sustainability, and aesthetics. Oral and written report of final design with specifications, engineering drawings, and project cost estimates. Prerequisite: CE 493, CON 326, and consent of advisor.
C E 508 - Advanced Soil Mechanics
(3 hours)
Consolidation theory and settlements, stress-path method, strength and deformation behavior of soils, failure theories, confined flow, flow nets, numerical analysis of flow, unconfined flow, seepage through earth dams. Laboratory experiments on consolidation and shear strength. Prerequisite: CE 350.
C E 515 - Advanced Foundation Engineering
(3 hours)
Advanced pile capacity formulations, buckling, and lateral loading. Mat foundations, finite difference solutions. Foundations on difficult soils. Slope stability; stability of earth dams. Excavations; geotechnical instrumentation. Prerequisite: CE 422.
C E 520 - Advanced Numerical Methods
(3 hours)
Selected numerical methods and applications chosen to meet current needs for solving problems in civil engineering. Prerequisite: CE 210. Not open to students who have previously earned credit in CE 610.
C E 541 - Pollution Modeling
(3 hours)
Phenomena that affect mass balance of contaminants in environmental systems. Advection, diffusion, dispersion, and interfacial mass transfer. Physical, chemical, and biological descriptions of these processes with mathematical models. Solutions to these models with illustrations from reactor engineering and surface water quality modeling. Application to actual process reactor. Prerequisite: CE 360.
C E 542 - Advanced Water Treatment
(3 hours)
Design of physical and chemical unit processes and unit operations with an emphasis on water treatment. Design of aeration systems, coagulation and flocculation processes, sedimentation tanks, filtration systems, chemical precipitation processes, ion exchange processes, and disinfection processes. Advanced purification methods including adsorption, reverse osmosis, electro-dialysis, and membrane processes. Treatment and disposal of physiochemical process sludges. Prerequisite: CE 360.
C E 543 - Advanced Wastewater Treatment
(3 hours)
Application of concepts from microbiology and biology to environmental engineering systems. Detailed integrated design of waste water treatment. Microbiology of waste water treatment processes and soil bioremediation processes. Interaction between biogeochemical phenomena and microbial processes in an environmental engineering context. Prerequisite: CE 360.
C E 546 - Groundwater Hydrology
(3 hours)
Groundwater in the hydrological cycle, fundamentals of groundwater flow; flow net analysis; steady-state and transient well testing techniques for parameter estimation; multiple well systems; leaky aquifers; sea water intrusion; groundwater investigation; artificial recharge of aquifers, design of wells; subsidence and lateral movement of land surface due to groundwater pumping. Design and computer applications. Prerequisite: CE 260.
C E 555 - Sustainability and Environmental Regulations
(3 hours)
Sustainability as it is expressed in environmental regulations and policies for conventional and hazardous wastes in air, water, and groundwater. Toxicological, risk assessment, risk-based engineering, and regulatory aspects for the sustainable management of all types of waste. Prerequisite: CE 360 or CON 352.
C E 558 - Solid Waste Management
(3 hours)
Sources, composition, and properties of solid waste. Transport of solid wastes and design of transfer stations. Separation, transformation, and recycling of waste materials. Landfill siting. Leachate generation, collection, and removal systems. Liner system design. Landfill settlement and stability analysis. Accelerated treatment of solid waste. Methane recovery from landfills. Closure, restoration, and rehabilitation of landfills. Case studies. Prerequisite: CE 350 or CON 320.
C E 560 - Advanced Structural Analysis
(3 hours)
Direct stiffness method for the analysis of two-dimensional trusses and frames, equivalent nodal forces, thermal and settlement effects, principle of virtual work, space trusses, grid structures, static condensation, Lagrange multipliers, tapered elements. Prerequisite: CE 210 and CE 359.
C E 562 - Advanced Steel Design
(3 hours)
Structural framing systems; rigid frame design; design of bracing; design of simple rigid and moment resisting connections; torsion of steel open sections; design of beams subjected to torsion; design of steel plate girders; design of composite beams. Prerequisite: CE 442.
C E 565 - Advanced Concrete Design
(3 hours)
Advanced topics in flexural design; torsion in beams; behavior and design of slender columns; biaxial bending of columns; design of two-way slabs; behavior and design of frame-wall structural systems; inelastic analysis of flexural members; use of strut and tie analysis; yield line analysis; design of mat foundations. Prerequisite: CE 365.
C E 567 - Prestressed Concrete Design
(3 hours)
Theory and analysis of prestressed concrete members by various methods of prestressing; design of simple and continuous beams and slabs; prestress losses; composite beams. Extensive study of materials used in prestressed concrete. Precast concrete systems. Prerequisite: CE 365.
C E 570 - Advanced Mechanics of Materials
(3 hours)
Two- and three-dimensional stress and strain at a point; two-dimensional elasticity; beams on elastic foundations; torsion of noncircular sections; curved beams; unsymmetrical bending; plastic collapse and limit analysis. Prerequisite: CE 270.
C E 575 - Structural Dynamics
(3 hours)
Single degree of freedom systems; multi-degree of freedom systems; lumped mass and consistent mass-MDOF beams; free and forced vibrations; earthquake loading; impact and impulsive loads; numerical procedures. Prerequisite: CE 210 and CE 359.
C E 577 - Seismic Design
(3 hours)
Theory, analysis, and design of building structures under earthquake loading. Application of current codes and standards related to steel, concrete, masonry, and wood structures. Prerequisite: CE 365 and CE 442.
C E 580 - Highway Safety
(3 hours)
Safety aspects of streets and highways; planning, implementation, and evaluation of highway safety improvement projects and programs. Highway risk analysis and risk management systems. Prerequisite: CE 310 and CE 480.
C E 583 - Geometric Highway Design
(3 hours)
Application of standards, theory, and practice in design of streets and highways. Design of streets and highways including cross section elements, shoulder, and roadside features. Prerequisite: CE 206.
C E 587 - Traffic Signal Design
(3 hours)
Analysis and design of traffic signals for isolated intersections and coordinated systems. Hardware, communication, and detection systems associated with signal systems. Fundamental concepts of simulation of traffic operations. Application of optimization/simulation computer software programs. Prerequisite: CE 480. Not open to students who previously earned credit in CE 581.
C E 588 - Transportation Economics
(3 hours)
Application of engineering economy for transportation systems; analysis of congestion costs, highway transportation costs, and road user consequences. Identification and measurement of highway benefits, concepts of value and time, and willingness to pay; discount rate and vest charge; concepts of depreciation and service life; life cycle cost analysis; evaluation of transportation alternatives and evaluation of completed projects/programs. Prerequisite: CE 393. Not open to students who previously earned credit in CE 582.
C E 591 - Advanced Topics I
(1-3 hours)
Topics of special interest, which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: Consent of department chair.
C E 592 - Advanced Topics II
(1-3 hours)
Topics of special interest, which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: consent of department chair.
C E 593 - Advanced Project I
(1-3 hours)
Supervised individual study of civil engineering and construction projects. Prerequisite: consent of department chair .
C E 594 - Advanced Project II
(1-3 hours)
Supervised individual study of civil engineering and construction projects. Prerequisite: consent of department chair.
C E 650 - Site Remediation
(3 hours)
Preliminary studies and engineering design of various treatment technologies used for remediation of contaminated soil and groundwater. Brownfield remediation. Soil composition and behavior, development and movement of groundwater. Soil sampling and monitoring of contaminants in groundwater. Drilling techniques based on soil type. Processes affecting the distribution of inorganic and organic pollutants in the environment, exchange among soil, water, sediment, and biota. Prerequisite: CE 350 and CE 360.
C E 655 - Environmental Management Modeling
(3 hours)
Development, solution, and interpretation of management models used in environmental planning and water resource systems. Risk analysis and management. Risk and how its various aspects influence environmental regulations and policy. Decision making with risk including risk-based design. Environmental impact assessment. Water resource allocation decisions. Prerequisite: CE 360.
C E 670 - Theory of Elasticity
(3 hours)
Stress and strain tensors; stress on arbitrary planes; principle stresses in three dimensions; equilibrium equations; strain displacement equations and compatibility conditions; transformation of stresses and strains; plane elasticity in rectangular and polar coordinates; boundary value problems; yield and failure criteria; energy principles. Prerequisite: CE 520 and CE 570.
C E 691 - Advanced Graduate Topics I
(3 hours)
Advanced topics of special interest in civil engineering and construction which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: Consent of department chair
C E 692 - Advanced Graduate Topics II
(3 hours)
Advanced topics of special interest in civil engineering and construction which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: consent of department chair.
C E 693 - Advanced Project I
(1-3 hours)
Supervised individual study of civil engineering and construction projects. Prerequisite: consent of department chair.
C E 694 - Advanced Project II
(1-3 hours)
Supervised individual study of civil engineering and construction projects. Prerequisite: consent of department chair.
C E 699 - Thesis
(0-6 hours)
Research on a topic selected by the student and approved by the chair. Repeatable to a maximum of six hours total. Prerequisite: consent of department chair.
This is the official catalog for the 2013-2014 academic year. This catalog serves as a contract between a student and Bradley University. Should changes in a program of study become necessary prior to the next academic year every effort will be made to keep students advised of any such changes via the Dean of the College or Chair of the Department concerned, the Registrar's Office, u.Achieve degree audit system, and the Schedule of Classes. It is the responsibility of each student to be aware of the current program and graduation requirements for particular degree programs.